

Logistical and environmental considerations for the Far East to Europe corridor

Harilaos N. Psaraftis
Technical University of Denmark
Department of Management Engineering

Overview

- EU SuperGreen project on green corridors
- One of the 9 corridors analysed was the "Silk Way" corridor (Far East to Europe)
 - -2 modes, maritime and rail
- Part I: Background
- Part II: Results from corridor benchmarking
- Part III: Role of ICT
- Part IV: Modal shift considerations

Part I

Background

- Theme title: Transport (including Aeronautics)
- Type of project: Coordination and Support Action
- Project full title: Supporting EU's
 Freight Transport Logistics Action
 Plan on Green Corridors Issues
- Project acronym: SuperGreen

- Duration: 15 Jan. 2010- 15 Jan. 2013
- Total budget: 3,453,747 EUR
- EC contribution: 2,634,698 EUR

www.supergreenproject.eu

The consortium

1 (Coordinator)	National Technical University of Athens	NTUA	Greece	
2	Norsk Marinteknisk Forskningsinstitutt AS, MARINTEK	MAR	Norway	
3	Sito Ltd (Finnish Consulting Engineers Ltd)	SITO	Finland	
4	D'Appolonia S.p.A.	DAPP	Italy	
5	Autoridad Portuaria de Gijon Gijón Port Authority-	PAG	Spain	
6	DNV Det norske Veritas	DNV	Norway	
7	via donau Österreichische Wasserstraßen-Gesellschaft mbH	VIA	Austria	
8	NewRail - Newcastle University	UNEW	UK	
9	CONSULTRANS	CONS	Spain	
10	PSA Sines	PSAS	Portugal	
11	Finnish Maritime Administration	FMA	Finland	
12	Straightway Finland Ry	SWAY	Finland	
13	SNCF Fret Italia	SFI	Italy	
14	Procter & Gamble Eurocor	PG	Belgium	
15	VR Group	VRG	Finland	
16	Lloyd's Register-Fairplay Research	LRFR	Sweden	
17	Hellenic Shortsea Shipowners Association	HSSA	Greece	
18	Dortmund University of Technology	DUT	Germany	
19	TES Consult Ltd	TES	Ukraine	
20	Turkish State Railways	TCDD	Turkey	
21	DB Schenker AG	SCH	Germany	
22	The Bellona Foundation	BEL	Norway	

OBOR conference, Hong Kong

Project objectives

- Support the EC on green corridors
- Encourage co-modality
- Benchmark green corridors
- Undertake networking activities between stakeholders (public and private)
- Deliver policy recommendations
- Provide recommendations concerning new calls for R&D

Green corridor definitions

EU Commission:

- 1. Concentration of freight traffic
- 2. Co-modality and advanced technology
- 3. Adequate transhipment facilities
- 4. Green propulsion
- 5. Demonstrate innovative transport units
- 6. Fair and non-discriminatory access

Swedish Transport Administration:

- A. Sustainable logistic solutions
- B. Integrated logistic concepts with utilisation of co-modality
- C. A harmonised system of rules
- D. National/international goods traffic on long transport stretches
- E. Effective and strategically placed transhipment points and infrastructure
- F. A platform for development and demonstration of innovative logistic solutions

Selection of corridors for analysis

The 9 SuperGreen corridors

BRIEF DESCRIPTION- BRANCHES	NICKNAME
Malmö-Trelleborg-Rostock/Sassnitz-Berlin-Munich-Salzburg-Verona-Bologna-Naples-Messina-Palermo Branch A: Salzburg-Villach-Trieste (Tauern axis)	Brenner
Branch B: Bologna-Ancona/Bari/Brindisi-Igoumenitsa/Patras-Athens	
Madrid-Gijon-Saint Nazaire-Paris	Finis Terrae
Branch A: Madrid-Lisboa	Tillis Terrae
Cork-Dublin-Belfast-Stranraer	Cloverleaf
Branch A: Munich-Friedewald-Nuneaton Branch B: West Coast Main line	Cloverlear
Helsinki-Turku-Stockholm-Oslo-Göteborg-Malmö-Copenhagen	
(Nordic triangle including the Oresund fixed link)- Fehmarnbelt - Milan - Genoa	Edelweiss
Motorway of Baltic sea	
Branch: St. Petersburg-Moscow-Minsk-Klapeida .	Nureyeev
Rhine/Meuse-Main-Danube inland waterway axis	
Branch A: Betuwe line	Strauss
Branch B: Frankfurt-Paris	
Igoumenitsa/Patras-Athens-Sofia-Budapest-Vienna-	T 5
Prague-Nurnberg/Dresden-Hamburg	Two Seas
Odessa-Constanta-Bourgas-Istanbul-Piraeus-Gioia Tauro-Cagliari-La Spezia-Marseille-Barcelona-	
Valencia-Sines	
Branch A: Algeciras-Valencia-Barcelona-Marseille-Lyon	Mare Nostrum
Branch B: Piraeus-Trieste	
Shanghai-Le Havre/Rotterdam-Hamburg/Göteborg-Gdansk-Baltic ports-Russia	
Branch:Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg	Silk Way

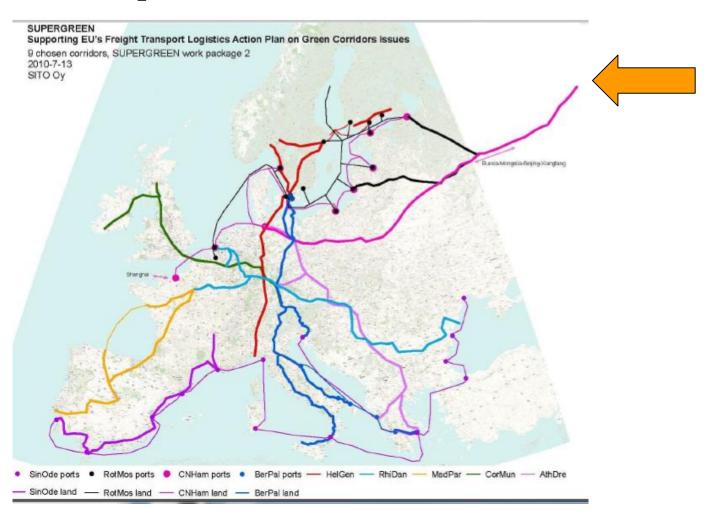
"Silk Way" corridor

- Maritime branch: Shanghai-LeHavre/Rotterdam-Hamburg/Göteborg-Gdansk-Baltic ports-Russia
- Rail branch: Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg

Silk Way vs Silk Road

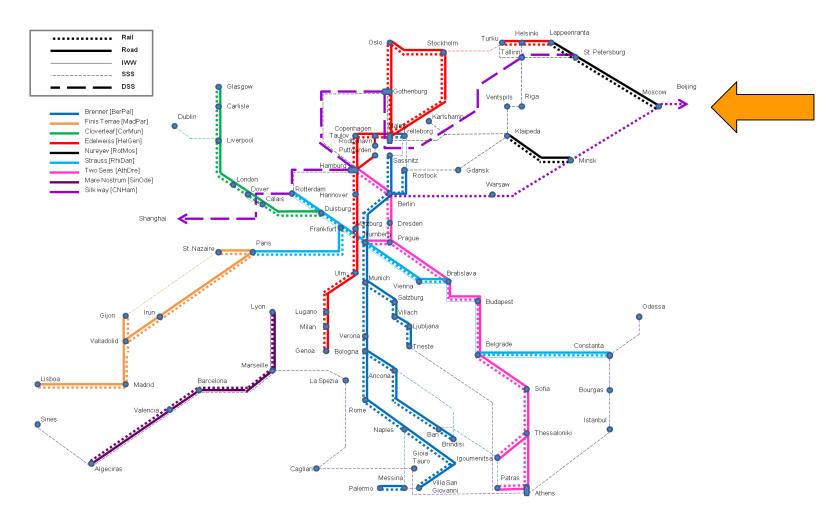
SuperGreen

OBOR

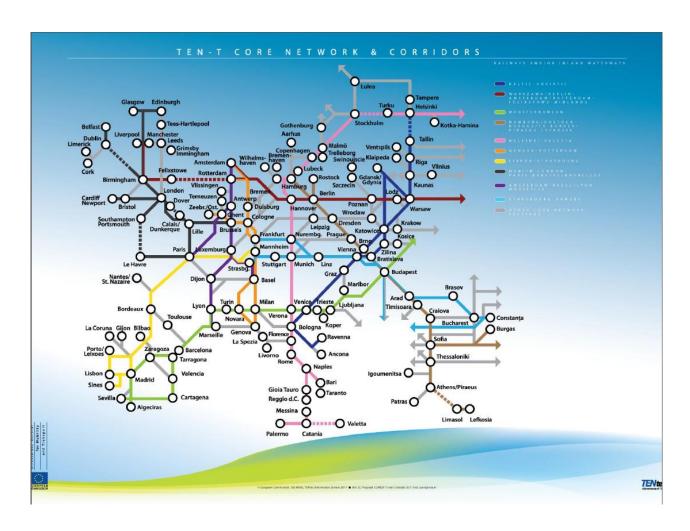

Why include "Silk Way" in this set?

(even though most of this corridor is outside the EU)

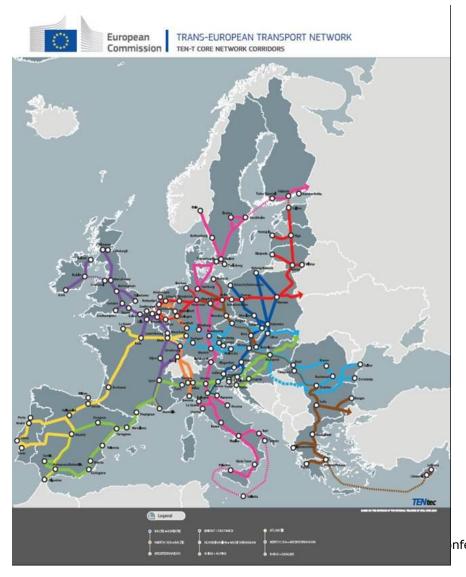
- Because this corridor was considered important for the trade relationship between Europe on the one hand, and the Far East on the other.
- Benchmarking it with the same methodology as in the pure intra-European corridors might be of interest.



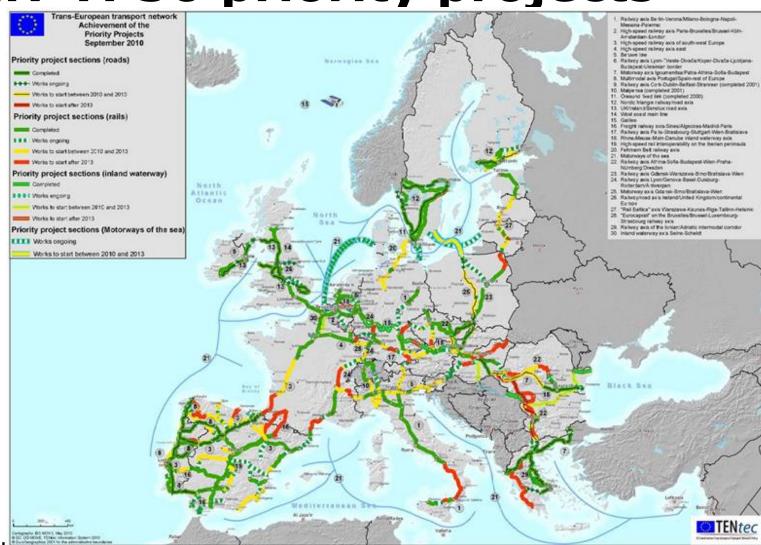
The 9 SuperGreen corridors



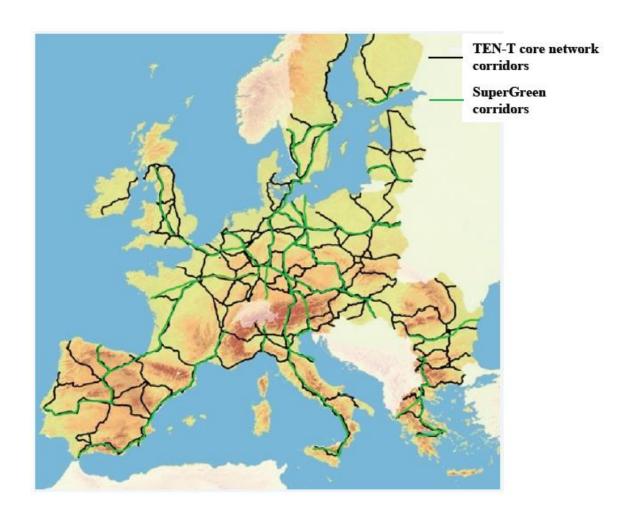
The 9 SuperGreen corridors in metro format



The TEN-T core network in metro format


TEN-T core network corridors

- Regulation EU 1315/2013 (TEN-T guidelines)
- Regulation EU 1316/2013 (Connect Europe Facility)



TEN-T: 30 priority projects

SuperGreen corridors (2010) vs TEN-T core network corridors (2011)

Part II: Corridor benchmarking and KPIs

- One of the central activities of the project
- What are reasonable KPIs?
- What is an appropriate approach?
- How is stakeholder input taken on board?

Initial list: 17 KPIs

Efficiency Absolute cost €/tonne Relative cost €/ton-km

Service quality Transport time hours

Reliability (time precision) % of shipments on time

Frequency of service number per week

ICT applications scale 1-5

Cargo security incidents/shipments
Cargo safety incidents/shipments

Environmental CO₂-eq g/ton-km

Sustainability SOx g/1000 ton-km NOx g/1000 ton-km

 PM_{10} g/1000 ton-km

Infrastructural Congestion average delay/ton-km

Sufficiency Bottlenecks scale 1-5

Social issues Land use (urban & sensitive areas) % of buffer zone

Traffic safety fatal.& ser.injur./m tkm

Noise % of length >50/55 dB

Process

- 4 regional stakeholder workshops across Europe
- Feedback from Advisory Committee
- Consultation, consultation, & more consultation!

Final list: 6 main KPIs!

Relative transport cost (to the user)

Transport time (or speed)

Reliability (on-time delivery)

Frequency of service

CO₂-eq emissions

SOx emissions

€/ton-km

hours (or km/h)

% of shipments

number per year

g/ton-km

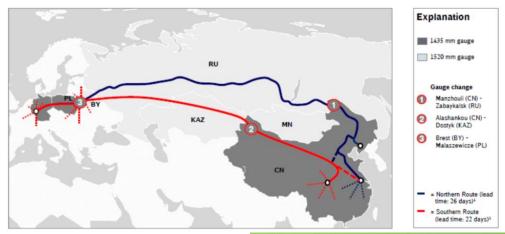
g/ton-km

Benchmarking results

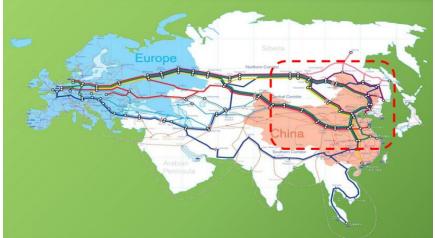
Corridor	Mode	Cost (€/tkm)	Av. speed (km/h)	Reliability (%)	Frequency (no/year)	CO ₂ (g/tkm)	SOx (g/tkm)
Brenner	Intermodal	0.03-0.09	9-41	95-99	26-624	10.62-42.11	0.02-0.14
	Road	0.05-0.07	19-40	50-99	104-2.600	46.51-71.86	0.05-0.08
	Rail	0.05-0.80	44-98	50-100	208-572	9.49-17.61	0.04-0.09
	SSS	0.04	23	100	52	16.99	0.12
Cloverleaf	Road	0.06	40-60	80-90	4.680	68.81	0.09
	Rail	0.05-0.09	45-65	90-98	156-364	13.14-18.46	0.01-0.02
Nureyev	Intermodal	0.10-0.18	13-42	80-90	156-360	13.43-33.36	0.03-0.15
•	SSS	0.05-0.06	15-28	90-99	52-360	5.65-15.60	0.07-0.14
Strauss	IWT	0.02-0.44	-	-	-	9.86-22.80	0.01-0.03
Mare Nostrum	SSS	0.003-0.20	17	90-95	52-416	6.44-27.26	0.09-0.40
	DSS	-	-	-	-	15.22	0.22
Silk Way	Rail	0.05	26	-	-	41.00	-
	DSS	0.004	20-23	-	-	12.50	-



10-11/5/2016


The Silk Way rail alternative

Via Trans-Siberian Railway (TSR)



Variants

Courtesy: students of 13420 Green Transport Logistics

TSR

Pluses

- Shorter trip time
- Electric traction (cleaner mode of transport?)

Minuses

- Limited capacity
- Different gauges
- Several border crossings
- Limited interoperability

Rail Cost KPI

Table 6 - Calculation of transport cost in €/tkm for the Silk Way railway service

Quotation specifics	Cost elements
Freight main haul/train (40° HC)	\$ 8,230
Cross-docking Rail Terminal China (loaded)	\$ 122
Insurance main haul/train China	\$ 25
Security costs Russian Federation	\$ 100
Re-expedition costs	\$ 35
Other administration	\$ 210
Liability insurance	\$ 35
Given Total cost per container	\$ 8,757 (€ 6,159) ¹⁰
Distance covered in km	11 000
Average net tonnes transported per TEU	12
Total transported net tonnes	1200
Cost per ton in € (6 158,60/12 net tonnes per	513
TEU)	
Cost in €/tkm	€ 0.05

From Trans-Eurasia Logistics

Up to 9 weekly trains heading both directions

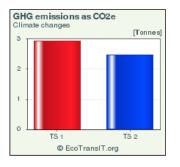
40'GP/HC COC in China, Germany, and other select locations Rates starting from USD 2,400

Transit time starting from low as 14 days

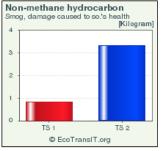
KPI summary

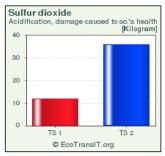
Table 7 - Benchmarks for the Silk Way corridor

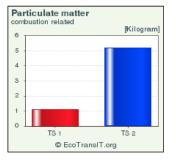
	Rail	Road	DSS	SSS
CO2 (g/tkm)	4111	-	12.512	-
SOx (g/tkm)	-	-	-	-
Cost (€/tkm)	0.05	-	0.004	-
Average speed (km/h)	26	-	20 – 23	-
Reliability (%)	-	-	-	-
Frequency (no per year)	-	-	-	-

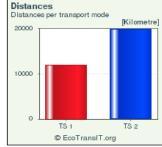

• Reliability, SOx and frequency KPIs: No analysis








Use EcoTransIT World emissions calculator



Observations

Maritime branch

- Silk Way's maritime branch ranks No. 1 among the 9 corridors on the cost and CO₂ KPIs.
- Maritime branch achieves better KPIs than rail in terms of cost and CO₂.

Rail branch

- Has significantly lower capacity compared to maritime.
- Has considerable lower transport time and on that criterion has a competitive advantage compared to maritime.

Part III: Potential role of ICT

Table 8 Main application areas for smart ICT systems at Silk Way corridor. Source: Zacharioudakis et al. (2012).

Segment or	Transp	ort Modes	Specific ICT	Data / Information	Installation Requirements	Bottleneck /	Related KPIs or
transport chain	Major Mode	Other Direct Beneficiary Users	technology		(technology, software, data)	Motivation	Attributes
Beijing - Hamburg	rail		ERTMS-European Railway Traffic Management EREX metering system				
Shanghai- Rotterdam/ Hamburg	Deep Sea		AIS - Automatic Identification System LRIT - Long Range Identification and Tracking Radar SafeSeaNet	Vessel position, speed, ship ID, ETA, ETD, type of cargo	Transponder onboard ship (mandatory), on shore ATS infrastructure	Improved systems for port logistics and traffic monitoring, increases efficiency and safety	Absolute and relative costs Service quality Transport time Reliability Congestion Bottlenecks Cargo security and safety (AIS – hazardous cargo tracking), fewer emissions.
Shanghai- Rotterdam/ Hamburg	Deep Sea		GNSS (GPS, Glonass, Galileo)	Position	GNSS receiver on board ship Not a specific ICT system, but is important input to ICT systems	Provide position to other systems	-
Shanghai- Rotterdam/ Hamburg	Deep Sea		Port Community Systems Single Window solutions	Time schedules, port resource management, electronic information exchange (EDI), traffic statistics	IT systems, sensors, web cameras	Port logistics, traffic monitoring, cargo tracking	Absolute and relative costs Service quality Transport time Reliability Congestion Bottlenecks ICT applications

Focus: European Rail Traffic Management System (ERTMS)

Serious **interoperability** problems in rail transport:

- More than 20 signalling systems in Europe
- Trains need to be equipped with several on-board systems to cross borders
- Drivers need to be trained to use these systems
- Sometimes even trains have to be changed at the border

In 2009, six priority corridors for the deployment of ERTMS (by 2020)

were established:

- Corridor A: Rotterdam-Genoa
- Corridor B: Stockholm-Naples
- Corridor C: Antwerp-Basel
- Corridor D: Budapest-Valencia
- Corridor E: Dresden-Constanta
- Corridor F: Aachen-Terespol

The ERTMS corridors

No system like ERTMS in Silk Way rail corridor

But it could

- Improve interoperability
- Reduce delays
- Reduce congestion
- Increase corridor capacity
- Improve all corridor KPIs

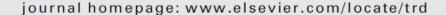
Part IV: Modal shift considerations

 Possible modal shifts to rail due to slow steaming

The issue

- Slow steaming is much prevalent these days.
- Slow steaming may induce some cargoes to prefer the (faster) rail mode.
- Is there an impact?

• A slow steaming scenario of 30% speed reduction was assumed: from 18 to 12.6 knots


Modal split model

Transportation Research Part D 15 (2010) 458-462

Contents lists available at ScienceDirect

Transportation Research Part D

Balancing the economic and environmental performance of maritime transportation

Harilaos N. Psaraftis*, Christos A. Kontovas

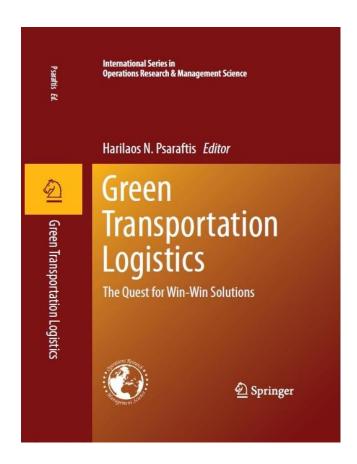
Laboratory for Maritime Transport, National Technical University of Athens, Greece

Use logit model

New shares

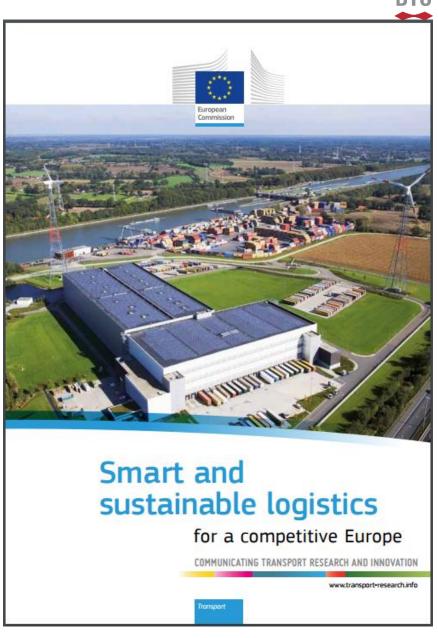
$$\frac{X_1^*}{X_2^*} = \frac{X_1}{X_2} e^{-\lambda \left(p_1^* - p_1 + k \frac{L_1 \Delta V}{V(V - \Delta V)}\right)}$$

$$\frac{x_1^*}{x_2^*} = \frac{x_1}{x_2} \left(1 - \lambda \left(p_1^* - p_1 + k \frac{L_1 \Delta V}{V(V - \Delta V)} \right) \right)$$


Net result

- Share reductions were found to be marginal.
- Reducing CO₂ in one mode may result in more CO₂ overall.
- Total $\triangle CO_2$ may be >0 or <0, depending on scenario.

Other SuperGreen results


- Corridor benchmarking
- Policy recommendations
- SuperGreen Handbook
- Extensive dissemination
 - 8 papers in journals, book chapters and papers in scientific conferences
 - 3 plenary workshops
 - 4 regional workshops
 - Close to 50 presentations in other external events
 - A book - →

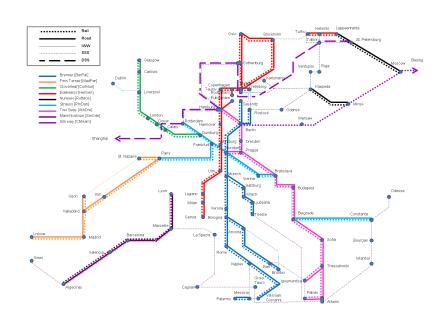
Latest news

SuperGreen was selected by the European Commission as a **success story** for a Policy Brochure on logistics for the Transport Research and Innovation Portal (TRIP)

Success stories = Research projects whose results are recognized as highly successful in supporting EU policy

Conclusions

- Deep sea shipping still the predominant mode
- Potential of the rail mode on the Far East to Europe corridor is largely untapped
- Advances in ICT and other technologies would move rail in that direction
- A niche market for which rail could be able to be attractive in this corridor is the market of relatively expensive products, for which faster delivery times are more important.



Conclusions ii

- The rail option's main competitor on the Far East to Europe corridor is not so much the maritime mode, but air cargo.
- Rail is already far superior to air in terms of emissions and cost KPIs.
- Whether it can also provide a credible alternative in terms of the time, reliability and other KPIs on that corridor remains to be seen.

THANK YOU VERY MUCH

- www.supergreenproject.eu
- hnpsar@transport.dtu.dk